105 research outputs found

    Centrosome loss results in an unstable genome and malignant prostate tumors

    Get PDF
    Localized, nonindolent prostate cancer (PCa) is characterized by large-scale genomic rearrangements, aneuploidy, chromothripsis, and other forms of chromosomal instability (CIN), yet how this occurs remains unclear. A well-established mechanism of CIN is the overproduction of centrosomes, which promotes tumorigenesis in various mouse models. Therefore, we developed a single-cell assay for quantifying centrosomes in human prostate tissue. Surprisingly, centrosome loss-which has not been described in human cancer-was associated with PCa progression. By chemically or genetically inducing centrosome loss in nontumorigenic prostate epithelial cells, mitotic errors ensued, producing aneuploid, and multinucleated cells. Strikingly, transient or chronic centrosome loss transformed prostate epithelial cells, which produced highly proliferative and poorly differentiated malignant tumors in mice. Our findings suggest that centrosome loss could create a cellular crisis with oncogenic potential in prostate epithelial cells.6 month embargo; published online: 2 September 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    DNA Methylation Profiles of Ovarian Epithelial Carcinoma Tumors and Cell Lines

    Get PDF
    BACKGROUND:Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies. METHODOLOGY/PRINCIPAL FINDINGS:We obtained DNA methylation profiles of 1,505 CpG sites (808 genes) in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes) that exhibited 'subtype-specific' DNA methylation patterns (FDR<1%) among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene. SIGNIFICANCE:The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of potential tumor progenitor cells, which may help illuminate the etiology and natural history of these cancers

    Proteomic Analysis of Ovarian Cancer Cells Reveals Dynamic Processes of Protein Secretion and Shedding of Extra-Cellular Domains

    Get PDF
    Background: Elucidation of the repertoire of secreted and cell surface proteins of tumor cells is relevant to molecular diagnostics, tumor imaging and targeted therapies. We have characterized the cell surface proteome and the proteins released into the extra-cellular milieu of three ovarian cancer cell lines, CaOV3, OVCAR3 and ES2 and of ovarian tumor cells enriched from ascites fluid. Methodology and Findings: To differentiate proteins released into the media from protein constituents of media utilized for culture, cells were grown in the presence of [ 13 C]-labeled lysine. A biotinylation-based approach was used to capture cell surface associated proteins. Our general experimental strategy consisted of fractionation of proteins from individual compartments followed by proteolytic digestion and LC-MS/MS analysis. In total, some 6,400 proteins were identified with high confidence across all specimens and fractions. Conclusions and Significance: Protein profiles of the cell lines had substantial similarity to the profiles of human ovarian cancer cells from ascites fluid and included protein markers known to be associated with ovarian cancer. Proteomic analysis indicated extensive shedding from extra-cellular domains of proteins expressed on the cell surface, and remarkably high secretion rates for some proteins (nanograms per million cells per hour). Cell surface and secreted proteins identified by indept

    reflection and lessons learnt from designing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromium

    Get PDF
    The EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. As part of HBM4EU, we presented a protocol for a multicentre study to characterize occupational exposure to hexavalent chromium (Cr(VI)) in nine European countries (HBM4EU chromates study). This study intended to collect data on current occupational exposure and to test new indicators for chromium (Cr) biomonitoring (Cr(VI) in exhaled breath condensate and Cr in red blood cells), in addition to traditional urinary total Cr analyses. Also, data from occupational hygiene samples and biomarkers of early biological effects, including genetic and epigenetic effects, was obtained, complementing the biomonitoring information. Data collection and analysis was completed, with the project findings being made separately available. As HBM4EU prepares to embark on further European wide biomonitoring studies, we considered it important to reflect on the experiences gained through our harmonised approach. Several practical aspects are highlighted for improvement in future studies, e.g., more thorough/earlier training on the implementation of standard operating procedures for field researchers, training on the use of the data entry template, as well as improved company communications. The HBM4EU chromates study team considered that the study had successfully demonstrated the feasibility of conducting a harmonised multicentre investigation able to achieve the research aims and objectives. This was largely attributable to the engaged multidisciplinary network, committed to deliver clearly understood goals. Such networks take time and investment to develop, but are priceless in terms of their ability to deliver and facilitate knowledge sharing and collaboration.publishersversionpublishe

    HBM4EU chromates study - Reflection and lessons learnt from designing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromium

    Get PDF
    Multicenter StudyThe EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. As part of HBM4EU, we presented a protocol for a multicentre study to characterize occupational exposure to hexavalent chromium (Cr(VI)) in nine European countries (HBM4EU chromates study). This study intended to collect data on current occupational exposure and to test new indicators for chromium (Cr) biomonitoring (Cr(VI) in exhaled breath condensate and Cr in red blood cells), in addition to traditional urinary total Cr analyses. Also, data from occupational hygiene samples and biomarkers of early biological effects, including genetic and epigenetic effects, was obtained, complementing the biomonitoring information. Data collection and analysis was completed, with the project findings being made separately available. As HBM4EU prepares to embark on further European wide biomonitoring studies, we considered it important to reflect on the experiences gained through our harmonised approach. Several practical aspects are highlighted for improvement in future studies, e.g., more thorough/earlier training on the implementation of standard operating procedures for field researchers, training on the use of the data entry template, as well as improved company communications. The HBM4EU chromates study team considered that the study had successfully demonstrated the feasibility of conducting a harmonised multicentre investigation able to achieve the research aims and objectives. This was largely attributable to the engaged multidisciplinary network, committed to deliver clearly understood goals. Such networks take time and investment to develop, but are priceless in terms of their ability to deliver and facilitate knowledge sharing and collaboration.Highlights: Feasibility of conducting harmonised Pan-European biomonitoring study on occupational exposure demonstrated; Developing a successful network and implementation of systematic methodology takes significant dedication from all involved; Methodological improvements were identified which will benefit future large-scale occupational biomonitoring campaigns; Developed multicentre network allows and promotes further opportunities for future research, knowledge sharing and collaboration; Data produced supports science to policy interface in the scope of REACH and occupational safety and health regulations.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733032 and received co-funding from the author’s organizations and/or Ministries.info:eu-repo/semantics/publishedVersio

    Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue Staining

    Get PDF
    An array of phenotypically diverse myeloid cells and macrophages (MC&amp;M) resides in the tumor microenvironment, requiring multiplexed detection systems for visualization. Here we report an automated, multiplexed staining approach, named PLEXODY, that consists of five MC&amp;M-related fluorescently-tagged antibodies (anti - CD68, - CD163, - CD206, - CD11b, and - CD11c), and three chromogenic antibodies, reactive with high- and low-molecular weight cytokeratins and CD3, highlighting tumor regions, benign glands and T cells. The staining prototype and image analysis methods which include a pixel/area-based quantification were developed using tissues from inflamed colon and tonsil and revealed a unique tissue-specific composition of 14 MC&amp;M-associated pixel classes. As a proof-of-principle, PLEXODY was applied to three cases of pancreatic, prostate and renal cancers. Across digital images from these cancer types we observed 10 MC&amp;M-associated pixel classes at frequencies greater than 3%. Cases revealed higher frequencies of single positive compared to multi-color pixels and a high abundance of CD68+/CD163+ and CD68+/CD163+/CD206+ pixels. Significantly more CD68+ and CD163+ vs. CD11b+ and CD11c+ pixels were in direct contact with tumor cells and T cells. While the greatest percentage (~70%) of CD68+ and CD163+ pixels was 0–20 microns away from tumor and T cell borders, CD11b+ and CD11c+ pixels were detected up to 240 microns away from tumor/T cell masks. Together, these data demonstrate significant differences in densities and spatial organization of MC&amp;M-associated pixel classes, but surprising similarities between the three cancer types
    • …
    corecore